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ABSTRACT :  

Control charts are useful and commonly used tools 
for monitoring the process parameters. It is well known 
that the CUSUM control charts are very effective in 
detecting small shifts in process parameters as compared 
to Shewhart-type charts.  In this paper, nonparametric 
CUSUM control chart based on run statistic is developed for 
monitoring the known location of a continuous process. 
The average run length performance of the proposed 
CUSUM chart is investigated using a simulation study and 
is compared with parametric CUSUM chart under normal 
and non-normal process distributions. The study reveals that the proposed chart perform better than the 
parametric CUSUM chart for detecting small shifts in process location under normal and non-normal 
process distributions.   

 
KEYWORDS : Average run length, Run test, Control chart, Process location, CUSUM statistic.  
 
1. INTRODUCTION  

Shewhart X chart is popular and commonly used control chart for monitoring process mean. 
The Shewhart X chart only uses the information from the last sample; hence it is insensitive to detect 
small and moderate shifts in the process mean. One alternative approach to address the detection of 
small shifts in process mean is to use the cumulative sum (CUSUM) chart. The CUSUM chart was 
introduced by Page (1954) and has been widely used for monitoring the mean of a quality characteristic 
of a production process. The CUSUM chart is designed such that it uses the past information along with 
the current information, which makes it more efficient than the Shewhart X chart in detecting small 
and moderate shifts in the process mean. Parametric Shewhart and CUSUM control charts often 
assumes that the process data come from some parametric distribution, most commonly the normal 
distribution. If underlying process distribution is unknown or not normal, these control charts may not 
be appropriate. In such situations, development and application of control charts that does not depend 
on particular distributional assumption is desirable. Nonparametric control charts can serve this 
purpose. The main advantage of nonparametric control chart is that it does not assume any probability 
distribution for the characteristic of interest. A formal definition of nonparametric control chart is given 
in terms of its in-control run-length distribution. The number of samples that need to be collected 
before the first out-of-control signal given by a chart is a random variable called the run-length; the 
probability distribution of the run-length is referred to as the run-length distribution. If the in-control 
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run length distribution is same for every continuous distribution then the chart is called nonparametric 
(Chakraborti et al (2004)). 

In the recent years, nonparametric control charts have been attracted much more attention 
from researchers. In literature, several nonparametric control charts are proposed for monitoring the 
parameter of the process. Chakraborti et al. (2001) presented an extension overview of the literature on 
univariate nonparametric control charts. Chakraborti and Graham (2007) provided an overview on 
nonparametric control charts and discussed their advantages. The location and scale of a process are 
two main parameters often monitored in nonparametric control charts. The problem of monitoring the 
location of a process is important in many applications. The location parameter could be the mean or 
the median or some percentiles of the distribution. For monitoring multivariate process location, some 
nonparametric control charts based on sign and signed-rank statistics are also available in literature.  
Das (2009) proposed multivariate nonparametric control chart based on bivariate sign test. Boone and 
Chakraborti (2011) proposed two Shewhart-type multivariate nonparametric control charts based on 
multivariate forms of the sign and signed-rank tests. Ghute and Shirke (2012a) developed 
nonparametric synthetic control chart based on bivariate signed-rank test to monitor changes in the 
location of a bivariate process. Ghute and Shirke (2012b) also developed nonparametric synthetic 
control chart based on bivariate sign test to monitor changes in the location of a bivariate process. For 
monitoring the location of a univariate continuous process, some nonparametric CUSUM charts have 
been developed. Bakir and Reynolds (1979) developed a nonparametric CUSUM chart to monitor 
process center based on within group signed ranks. McDonald (1990) proposed a CUSUM procedure 
based on sequential ranks. Amin et al. (1995) developed nonparametric CUSUM control chart for 
grouped data based on sign test statistic. Li et al. (2010) proposed a nonparametric CUSUM control 
chart based on well known Mann-Whitney test statistic for monitoring the unknown location of a 
process. Yang and Cheng (2011) have proposed a nonparametric CUSUM chart to monitor the possible 
small shifts in the process mean. Liu et al. (2015) proposed a sequential rank based nonparametric 
CUSUM control chart for detecting arbitrary magnitude of shifts in the location parameter. Zombade 
and Ghute (2018) developed Shewhart-type nonparametric control chart for process location.  

The purpose of this paper is to develop a nonparametric CUSUM control chart for monitoring 
the location of a process. The proposed chart is based on runs computed within samples and used in 
place of sample means in the parametric CUSUM chart.  In this paper we focus on positive-sided CUSUM 
chart in which upward shifts in the process location are of interest. The rest of the paper is organized as 
follows. A parametric CUSUM chart for monitoring process mean based on X  statistics is described in 
Section 2. A brief introduction of nonparametric run test for location parameter is discussed in Section 
3. The proposed nonparametric CUSUM chart for monitoring process location based on run statistic is 
presented in Section 4. The performance of proposed nonparametric CUSUM chart is evaluated and 
compared with parametric CUSUM chart in Section 5. Some conclusions are given in Section 6. 

 
2. PARAMETRIC CUSUM CHART FOR PROCESS MEAN  

Let X denote the process variable being measured and suppose that X has a normal distribution 
with mean  and standard deviation . Let 0  be in-control value for   and 0  be in-control value 
for . Usually, two symmetric CUSUM charts are used to detect two-sided mean shifts. For detecting 
positive shifts in , a one-sided (upper) CUSUM consists in computing recursively the sequence

1,  iCi , where 
 

                       00 C ; 1,])(,0[max 01  


 ikXCC iii                                        (1) 
 

Where i is subgroup number; iX  is the mean of study variable X, 0 is the target mean of the 
study variable X and k a positive constant is the reference value of the CUSUM scheme. The CUSUM 
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signals a change in process mean as soon as 
iC  exceeds a control limit 0h , interpreting that process 

mean has shifted upward. 
To control downward shifts in the process mean  , a one-sided (lower) CUSUM consists in 

computing recursively the sequence 1,  iCi , where 
 

                       00 C ; 1,])(,0[max 01  


 ikXCC iii                                          (2) 
 

The CUSUM chart using this statistic would signal whenever signals a change in process mean as 
soon as 

iC  exceeds hCi  , where 0h , interpreting that process mean has shifted downward. For a 

two-sided CUSUM chart, the two charting statistics 
iC  and 

iC are plotted against a single control limit 

h. The starting value for both plotting statistics is usually taken as .000   CC  A signal is given if 

hC   or hC  . We refer parametric CUSUM chart based on X  as XCSM   chart. 
 

3. NONPARAMETRIC RUN TEST FOR LOCATION 
In this Section, we briefly review the run test described by Varon (2010). Let nXXX ...,,, 21  be 

a subgroup sample of size n > 1 from a distribution with location   and standard deviation . It is 
assumed that these observations are independent and have a continuous distribution symmetric about 
location (median or median) . Let 0  denote the target known value of the process location.  Without 
loss of generality, we assume that 00    and 1.0   A test for the hypothesis 0:H0  versus

0:H1  , based on runs has been discussed by Varon (2010).  A run is defined as a succession of two 
or more identical symbols which are followed and preceded by different symbols or no symbol at all.  At 
each inspection point, a nonparametric run statistic R is computed using a subgroup sample

nXXX ...,,, 21 . For the construction of runs, the variable j is defined as 
 

              


 


otherwise,0

,....,3,2,1,0if,1
)(

njX
XS jD

jDj ,                                              (3)                    

                          
where jD  is the antirank of )(|| jX  such that )(|||| jj XD   . Hence jD  labels the X which 

corresponds to the thj  order absolute value. Then the sequence n ,...,2,1  is a dichotomized 
sequence. The changes in the dichotomized succession are identified with the following indicators:  
Define 11 I  
 

          















jj

jj
j

nj
I





1

1

if,0

.,....,3,2,if,1
                                                             (4) 

 
The number of runs until the jth element of the dichotomized succession is obtained through the 

following partial sums: 
 

                           .,....,2,1,
1

niIr
i

j
ji 



                                                                             (5)                                                  
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Naturally ji rr   for ji   and nr is the total number of runs in the sequence. Test statistic 
based on runs is given as  

 

                          j

n

j
j

n

r
r

R 



1

1                                                                                               (6) 

 

      Where  














0,1

.,....,3,2,1

,1,1

j

j

j

if
nj

if





                                                         (7) 

 
Note that R includes the number of runs until every element of the dichotomized succession, 

increasing their value when )onesofruns,1(1 jj   and decreasing when 

)zerosofruns,1(0 jj    the large value of R indicate greater number of runs of ones and it is an 

indication that 0 . Additionally the inverse of total number of runs 
nr
1

 is used as a factor of 

standardization. It should be noted that the statistic R takes values between –n and n. Large values of R 
indicate a positive shift where as small value indicate a negative shift. For 0 , it is expected that R 
takes large positive values. Accordingly H0 is rejected for large values of R.  

 
4. NONPARAMETRIC CUSUM CHART FOR LOCATION 

In this Section, we develop a nonparametric CUSUM chart for monitoring location of a process. 
Let X denote the process variable being measured and suppose that X has a continuous symmetric 
distribution with location parameter . Here we have to monitor location parameter   through control 
charting. Let 0  be in-control or target value of  . The location parameter of a distribution under study 
is usually unknown in practice and need to be estimated from the analysis of the preliminary samples 
taken when the process is assumed to be in-control. The proposed nonparametric CUSUM charting 
technique for detecting a change in location   from in-control value 0  to some out-of-control value 1  
is based on first transforming the observed data into a nonparametric run statistic R and then applying 
the CUSUM chart on the transformed statistic (the chart is referred as CSM-R chart). The proposed CSM-
R chart is constructed by accumulating the statistics ...,, 21 RR  sequentially from each sample subgroup 

nXXX ,...,, 21 of size n. When detection of shift in location  (from its specified value 0 ) in only one 
direction (up or down) is of interest, a one-sided CUSUM chart is desirable. When the objective is to 
detect increase in   an upper one-sided CUSUM uses the plotting statistic  

 
                                               ])(,0[max 01 kRSS iii  


                                          (8) 

 
where starting value of plotting statistic is 00 S and k is the reference value of the CUSUM 

scheme. The statistic 
iS is plotted on the chart along with control limit h. If any 

iS plots on or outside 
the control limit h, the process is declared out-of-control and search for assignable causes is started, 
otherwise, the process is considered in-control and control procedure continues. When the objective is 
to detect decrease in   lower one-sided CUSUM uses the plotting statistic  

 
                                               ])(,0[max 01 kRSS iii  


                                           (9) 
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where starting value of plotting statistic is 00 S and k is the reference value of the CUSUM 

scheme. The statistic 
iS is plotted on the chart along with control limit h. If any 

iS plots on or outside 
the control limit -h, the process is declared out-of-control and search for assignable causes is started.  
      When the objective is to detect both increase and decrease in   from 0 , a two-sided CSM-R 

chart uses both of the  statistics 
iS and 

iS simultaneously. A signal is given if  hSi   or hSi  . We 
assume that the objective of monitoring the process is to detect any special cause that changes location 
  from 0 . Although detecting decrease in location   may be of interest in some applications, here we 
focus on more important problem of detecting increase in the process location . The upper one-sided 
CSM-R chart can be constructed as follows: 
 
Step 1. Collect a subgroup sample niXXXX iii  , ... 2, 1, ,),..., ,( ni21   of size n from a process. 

Step 2.  Compute run statistic iR  from the subgroup sample iX  , i = 1, 2,  … , n. 

Step 3. Construct the CUSUM statistic as  kRSMaxS ii  


 )(  ,0 0i1  , where ( 0k ) is reference 

parameter of CUSUM scheme and 
iS will detect upward location shift. 

Step 4. Plot 
iS  against control limit h.  

Step 5. If 
iS  exceeds h, process is declared to be out-of-control at the ith sample otherwise the process 

is considered to be in-control and monitoring continues to the next sample. 
 
5. PERFORMANCE COMPARISONS 
 The performance of a control chart is usually measured by ARL, which is the average number of 
samples required to signal an out-of-control case. The in-control ARL is denoted by 0ARL  and out-of-
control ARL is denoted by 1ARL . The performance of the proposed CSM-R chart is compared with the 

performance of the parametric XCSM   chart which is known to have very good properties when 
underlying process distribution is normal. A computer programme developed in C language is used to 
simulate ARL. Three process distributions are considered in simulation study namely, normal 
distribution with location   and scale  , Laplace distribution with location   and scale  , which is 
symmetric and having heavier tails than normal distribution and the uniform distribution with location 
  and scale  , which is symmetric and having lighter tails than the normal distribution. Equation (10), 
(11) and (12) respectively gives probability density functions of normal distribution with location   
and scale  , Laplace distribution with location   and scale   and uniform distribution with location 
  and scale  . 
 

         0and,
2
1exp

2
1)(

2




















 

 




xxxf                                  (10)                            

          0and,||exp
2
1)( 






 
 





xxxf                                             (11) 

         0and,
2
1)(  


xxf                                                              (12) 

 
 The distributions have been shifted and scaled such that they all have an expected value of 0 
and standard deviation 1, so simulation results are easily comparable.  To achieve standard deviation of 
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1, we choose 1  for normal distribution, 
2

1
  for Laplace distribution and 3  for uniform 

distribution. 
      Consider a process where quality characteristic of interest X is distributed with location   and 
standard deviation . Let 0  and 0  be the in-control values of   and   respectively. When a shift in 
process location occurs, we have change from the in-control value 0  to the out-of-control value

)0(,001   . Therefore, when control chart for location is employed, the process shifts are 

measured through
0

01 ||






 , where 1  is the shifted location and 0  is in-control location. The 

amount of a shift in the location is taken over the range 2.1)2.0(0 . When 0 , the process is in-

control. The ARL values of the XCSM   and proposed CSM-R charts are computed using 10000 

simulations.  The optimal reference value k is taken to be 
2


 if a CUSUM chart is to be able to detect a 

standardized location shift of size . Once k is determined, parameter h is usually chosen to achieve 
specified 0ARL . In simulation study we choose k = 0.5 and .3700 ARL    

 Table 1 and Table 2 provide the ARL performance of the XCSM   and proposed CSM-R charts 
when underlying process data actually follows normal, Laplace and uniform distributions with sample 
sizes n = 10 and 15. 
 

Table 1.  ARL comparison for n = 10. 

Shift 
  

Normal distribution Laplace distribution Uniform distribution 
CSM- X  
h = 0.40 
k = 0.5 

CSM-R 
h = 16.25 
k = 0.5 

CSM- X  
h = 0.4515 
k = 0.5 

CSM-R 
h = 16.25 
k = 0.5 

CSM- X  
h = 0.376 
k = 0.5 

CSM-R 
h = 16.25 
k = 0.5 

0.0 370.21 371.39 370.5 368.5 370.16 371.93 

0.2 51.56 20.23 63.27 15.07 45.04 21.93 

0.4 10.52 9.25 12.71 7.68 9.68 10.19 

0.6 3.76 6.32 4.22 5.57 3.60 6.94 

0.8 2.08 5.00 2.24 4.63 2.02 5.39 

1.0 1.47 4.28 1.55 4.11 1.42 4.54 

1.2 1.18 3.88 1.22 3.78 1.16 4.01 

2.0 1.00 3.09 1.00 3.18 1.00 3.00 
Table 2.  ARL comparison for n = 15. 

Shift 
  

Normal distribution Laplace distribution Uniform distribution 
CSM- X  
h = 0.2223 
k = 0.5 

CSM-R 
h = 19.85 
k = 0.5 

CSM- X  
h = 0.2515 
k = 0.5 

CSM-R 
h = 19.85 
k = 0.5 

CSM- X  
h = 0.211 
k = 0.5 

CSM-R 
h = 19.85 
k = 0.5 

0.0 369.0 371.61 371.36 371.92 370.14 369.91 
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0.2 40.97 15.93 49.24 12.41 37.51 16.75 

0.4 7.71 7.80 8.81 6.68 7.22 8.26 

0.6 2.70 5.45 2.93 4.94 2.61 5.77 

0.8 1.53 4.37 1.58 4.14 1.50 4.61 

1.0 1.15 3.78 1.18 3.66 1.15 3.95 

1.2 1.03 3.40 1.05 3.38 1.03 3.47 

2.0 1.00 3.00 1.00 3.02 1.00 3.00 
  Examination of Table 1 and Table 2 leads to the following findings: 
 For monitoring a process operating under normal distribution, it is observed that, the proposed 
CSM-R chart is more efficient than the parametric XCSM   chart for detecting small shifts in the 
process location of size 4.0 . For example, for a shift of size 20.0  under normal distribution 
with n = 10, the proposed CSM-R chart has  23.201 ARL which is smaller  than the 56.511 ARL  of 

parametric XCSM   chart. 
 The proposed CSM-R chart is more efficient than the parametric XCSM   chart for detecting small 
shifts in the process location of size 4.0  when underlying distribution has tails heavier than the 
normal distribution. For example, for a shift of size 20.0  under Laplace distribution with n = 10, the 
proposed CSM-R chart has 07.151 ARL which is much smaller than 27.631 ARL  of parametric 

XCSM   chart. 
 The proposed CSM-R chart is more efficient than the parametric XCSM   chart for detecting small 
shifts in the process location of size 4.0  when process operates under light tail distribution such as 
uniform distribution. For example, for a shift of size 20.0  under uniform distribution with n = 10, 
the proposed CSM-R chart has 93.211 ARL which is much smaller than 04.451 ARL  of parametric 

XCSM   chart. 
  It is natural to expect that parametric CUSUM outperform nonparametric CUSUM for normal 
process distribution. Surprisingly, the proposed CSM-R chart performs better than parametric 

XCSM   chart for detecting small shifts in the process location under normal and non-normal 
process distributions while the parametric XCSM  chart performs better only for larger shifts in 
process location. The effectiveness (speed of detection) of the proposed RCSM   chart varies 
depending on the underlying process distribution.  

 
6. CONCLUSIONS 

In this paper, nonparametric CUSUM control chart based on run statistic is developed for 
monitoring the location parameter of a continuous symmetric process distribution. The proposed chart 
requires simple calculations and it is straightforward to implement. The performance of the proposed 
control chart is studied by simulation under normal, light tailed and heavy tailed process distributions. 
Simulation study indicates that the proposed CSM-R has the ability to detect small shifts of size 4.0  
more quickly than the parametric XCSM  chart under normal, heavy tailed and light tailed 
distributions.  
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